
PHPIL: Fuzzing the PHP Interpreter with Custom
Bytecode

Vignesh S Rao∗, Tarunkant Gupta†, Saastha Vasan‡, Deepthi L.R§
Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham

Amritapuri, India
Email: ∗vigneshsrao5@gmail.com, †tarunkant05@gmail.com, ‡saasthavasan@gmail.com, §lrdeepthi2002@gmail.com

Abstract—We aim to fuzz the PHP interpreter to search
for bugs which may or may not be able to compromise the
security of the interpreter and the system it is running on.
In our research we propose to implement a fuzzing framework
for the standard implementation of the PHP interpreter. What
makes our fuzzer different from other PHP interpreter fuzzers is
the ability to create syntactically and semantically correct code
samples. We found in our research that most of the available PHP
interpreter fuzzers, although able to create syntactically correct
code samples, are unable to produce semantic correctness.

We created our own intermediate language composed of
custom opcodes, which is used by the code generator to generate
the code samples. Code generator is governed by the rules
which make sure that the resulting code follows the PHP
syntax and symmetric conventions. The mutator is driven by the
code generator and it performs the mutation on the generated
intermediate language. We created a corpus which is used to
store the desired code samples on which further mutations can
be performed. Thus new inputs are generated by performing
mutations to the code which increases the coverage, thus
maximizing the chances of finding vulnerabilities. The lifter lifts
the mutated intermediate language sample to the php code before
feeding to the interpreter. The execution of the php code sample
is monitored for any unexpected behaviour of the interpreter. A
report is formed in case of any unexpected behaviour.

Index Terms—Fuzzing, Coverage, Corpus, Crashes, Mutation,
PHPIL, Bytecode

I. INTRODUCTION

PHP is a popular general-purpose scripting language that is
especially suited to web development [1]. Originally developed
in 1995, today php is used for the majority of websites and
server side applications. Actually PHP is a server side scripting
language which is used for connecting Web Page with a
DataBase such as asp or jsp.

PHP interpreter like any other interpreter is a software that
executes PHP code one line at a time. PHP interpreter plays
an integral role in writing server side php script and today
as PHP is used for the majority of website and server side
applications there is a need for testing the security of the PHP
code, there is a need to check the vulnerabilities present in
the interpreter. Once found those vulnerabilities like memory
corruption or access violations which can open doors to a pool
of security issues such as memory leaks which might lead to
remote code execution and other security attacks.

In this paper we are proposing a method to check for
security issues in the PHP Interpreter using Fuzzing. Fuzzing
or fuzz-testing unlike manual static and dynamic analysis is

capable of detecting programming errors. For fuzzing the php
interpreter, we create random automated unexpected inputs
and pass it to the interpreter. The program execution is then
monitored closely for any unexpected behaviour which might
trigger system vulnerabilities. For this we will be developed
a coverage guided fuzzer. A coverage guided fuzzer is aimed
at maximizing the code code coverage which enables it to
go to the deepest part of the program logic. New inputs
are generated by performing mutations to the code which
increases the coverage, thus maximizing the chances of finding
vulnerabilities.

II. LITERATURE REVIEW

Before starting with the project we read some existing
literature on the topic for background knowledge. In [2]
fuzzing applications to find concurrency related vulnerabilities
is discussed. The paper details various techniques for code
coverage like edge based coverage and finding new paths
that we included in our project as well. The paper also
mentions usage of sanitizers which we are using to fuzz
the PHP interpreter. Another paper that we came across
was based on exploit techniques and mitigation [3]. The
paper is based on Android devices, but we used the various
exploit techniques that the paper details like return-oriented-
programming to generate even better seed input for our
fuzzer. Another approach that we thought of implementing
was coming up with a novel technique to fuzz the interpreter
by implementing machine learning models to generate code
that can detect network vulnerabilities in an automated manner
and feed that code to corpus when we are trying to create
network crashes [4]. But after further research we found out
that due to scalability factor and the manual interference that
will be required to implement this model and this approach
would not be feasible for our project. Some other work
that we went through [5] [6], included the idea of fuzzing
interpreters via abstract syntax tree representation of the code.
This idea though appealing, had the downside of the generated
code not being semantically correct. Thus we went with the
idea of generating a custom bytecode representation for code
generation.

Essentially, what we found missing in most of the
programming language fuzzers that we came across was that
all of them emphasized on syntactical correctness and not
on semantically correct input. We attempt to fix this, by

IEEE - 49239

11th ICCCNT 2020
July 1-3, 2020 - IIT - Kharagpur

Kharagpur, India

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 28,2024 at 10:52:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. High Level Fuzzing Architecture.

introducing a custom bytecode representation that will result
in semantically correct input while maintaining the syntactical
correctness of the the grammar. Another interesting approach
that we use in our fuzzer is the use of templates instead of
parsing grammar which is much easier to develop and tweak.

III. PROPOSED APPROACH

The aim of this project is to find crashing samples in PHP
interpreter and for this we came with a novel approach that
is fuzzing the PHP interpreter with the help of byte codes.
Programs generated from the byte codes will be semantically
and syntactically correct and that will help us to generate
correct programs to feed into the PHP interpreter. As of our
knowledge, there is no other PHP interpreter fuzzer that fuzzes
on bytecode level, though this concept was used by S. Groß
to fuzz javascript engines [7] and that gives us the opportunity
to find more bugs in the PHP interpreter.

The following details a brief overview of how our fuzzer
generates semantically and syntactically correct PHP code:
Define Opcodes which you will need for your fuzzer in
order to generate PHP code. PHP has its own opcodes but
for our fuzzer we did not need that low level of opcodes,
so we made our own opcodes like BinaryOperationthat
will contain all primary level of opcodes like Add, Sub,
Muletc. Define syntax of the Opcodes Create random
variables and assign the values according to the syntax.
Track all the variables/operations/instructions which would
help us to debug/analyze the program. Added analyzers which
helped us to find type/context/scope of a variable. Add
constraints for bringing the semantic correctness, like having
the breakstatement in the beginning of the loop doesn’t mean
anything. While calling a function the fuzzer can’t choose the
loop variable as argument variable for the functions. Now, we
generate random programs and lift that to PHP syntax. Figure-
1 showcases the high level fuzzing layout of our fuzzer.

IV. INTERMEDIATE LANGUAGE

An intermediate language is an abstract programming
language used by a compiler as an in-between step when
translating a computer program into machine code. A
programming language is really complex as it incorporates

support to all the work that can be done using that particular
programming language. One way of generating code is to add
support to all the instructions in the native language itself in
our case generating php source code itself but it will require us
to give support to all the PHP instructions individually which
will consume a lot of time and is not feasible considering
how enormous the entire language is. So we came up with
another method for dealing with this problem. We developed
our own intermediate language bytecode which we are using
to generate the PHP source code. As the central idea of this
project is to develop a mutation based fuzzer for increasing the
coverage, thus performing mutation on the bytecodes construct
is much more effective and easier when compared to the source
code or AST. The bytecodes can be used to create data flow
graphs and gives us the actual control which is needed for
achieving the maximum code coverage.

A. Byte Code
To achieve the maximum code coverage and providing

support for different mutation strategies we came up with
an idea of creating custom bytecodes which will be used to
generate code and eventually be lifted to the actual PHP source
code using a lifer. How this conversion is performed will be
explained in detail later in the lifer’s section. Using bytecodes
gives us multiple advantages like the bytecodes can be used to
data flow graph and gives us the actual control which is needed
for achieving the maximum code coverage. It also enables us
to come up with different mutation strategies which could not
have been implemented easily as AST mutation.

The aim is to create code samples which are both
syntactically and semantically correct before and after the
mutation is performed and the resulting code must increase
the code coverage.To guarantee the syntactical correctness of
the generated code it is enough to convert the bytecode to
the corresponding PHP code is possible. As explained earlier
using bytecodes helps in implementing different mutation
strategies which help in increasing the code coverage. As the
mutation performed on the byte code is minimal, there is a
very less possibility that the resulting code will be semantically
incorrect. All the mutations are also governed by the rules
which make sure that the resulting code follows the basic
rules of the IL. Some of the rules which govern the semantic
correctness are keeping a check for scope violations like if a
variable is declared and defined in a particular scope then it
is not available in other scope and making sure that a variable
is initialized before operations are being performed on it.

V. ANALYZERS

In order to support some fuzzer mechanisms like mutations
and some program requirements like syntactic and semantic
correctness, we have implemented a number of program
analyzers. This section goes over the description and
implementation of each of the analyzers used in the fuzzer.

A. Scope Analyzer
The scope analyzer keeps track of the scope of each of the

variables that is currently in use. A scope is represented as a

IEEE - 49239

11th ICCCNT 2020
July 1-3, 2020 - IIT - Kharagpur

Kharagpur, India

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 28,2024 at 10:52:49 UTC from IEEE Xplore. Restrictions apply.

Python list. The scopes in active use are maintained via a stack.
Whenever a new scope is encountered, a new list is pushed
into this stack. Thus the top of the stack contains the current
scope, and the bottom of the stack contains the global scope.
The information about the scope of a variable is useful when
the fuzzer has to randomly select a variable among all the
defined ones. This gives the fuzzer more fine grained control
so it can prefer the local variable as compared to global ones.

B. Context Analyzer

This is used to keep track of the program context. For
example, we don’t want to emit a ‘return‘ instruction when we
are not even within a function. The challenge here is that, like
scopes, context’s can be nested. For example, in a loop within
a function, we are in the function context as well as the loop
context. Thus keywords like continue, break and return are
all valid. To keep track of the contexts we again use a stack.
Currently we have divided the context to be of three types,
namely global, loop and function. Whenever a new context
is encountered, a new entry is pushed on to the stack. This
new entry has the initial value of the last context. Thus if we
are entering a loop inside of a function, the new context entry
that is pushed already has the information that it is inside a
function, so a return keyword can be used inside the loop.

C. Type Analyzer

This analyzer is used to infer the types of the variables used
in the input program. Knowledge about types of variables is
important in order to make the correct decision about which
variable is to be used. For example, if a call is made to the
inbuilt function ”strlen”, then the argument should ideally be
a string rather than anything else. The type inference system
is not yet complete and needs better algorithms in order to
increase the efficiency. Currently the type of a variable is
inferred based on the IL opcode in which it is being used
in. Thus if there is a LoadInteger opcode the variable type
is set to an integer. This is largely ineffective while inferring
the types of function parameters. As PHP is a dynamically
typed language, the function parameter types are not known
before runtime. This remains an area of improvement for
future research.

VI. CODE GENERATOR

Code generator is one of the core components of the
project. It uses the byte codes to generate the intermediate
code. As mentioned in preceding sections, we introduced a
new intermediate language, which makes it easier to perform
mutation while allowing the conversion of code from here
to the PHP code. Our intermediate language consists of
instructions, each consisting of an operation with a list of input
and output variables.

The generation of intermediate language is governed by
different rules to maintain the semantic correctness of the code.
Variables are identified through integers and are required to be
numbered consecutively starting from zero in every program.
In our intermediate language control flow is implemented

using special block instructions. Each block has a starting and
an ending operation and has its own scope which means the
variables declared inside this scope cannot be used outside
the block. Furthermore, the input variables to the block
instructions themselves, such as the condition variable in do-
while loop, have to be defined in the outer scope. This reflects
the behavior of common programming languages.

The following invariants must hold for every intermediate
code generated for PHP -

• Variables are numbered consecutively.
• All input values to an instruction must be variables, there

are no immediate values or nested expressions.
• All variables must be defined before they are used, either

in the current block or an enclosing one.
• A block begin must eventually, either be followed by the

corresponding closing instruction or by an intermediate
block instruction, such as a BeginElse for which the
same holds true.

• All inputs to block instruction must be defined in an outer
block.

• The first input to a Copy instruction must be the output
of a Phi instruction.

VII. LIFTER

The final aim of the fuzzer is to feed a randomly generated
PHP program to the interpreter. Since the core mutations and
code generators work on the intermediate bytecode, there is a
need to convert the bytecode to PHP code in order to feed it to
the interpreter. The lifter is the component of the fuzzer that
is tasked with this. It has handlers for each of the bytecode
and the bytecodes corresponding syntax to convert to its PHP
equivalent code. It also handles PHP specific variable scope
syntax among the other things. In short, the lifter converts
PHPIL to PHP code, taking care of the syntax.

VIII. MUTATION

Mutators are used to introduce small changes in the existing
valid code while still preserving its behaviour. Mutation
process leverages an existing corpus of seed inputs during
fuzzing. It generates inputs by modifying the provided seeds.

We propose to implement the following two mutator for our
php fuzzer:

• Input Mutator
• Operation Mutator
One of the main scopes for future improvements would be

to add more efficient mutators.

A. Input mutator

This method mutates the data-flow in a program by
replacing one instruction with another. In our php fuzzer all
the instructions are variables. So the input mutator actually
replaces the instruction variables with any random variable.
An overview of this is represented in Listing 1

Listing 1. Input mutator PHPIL code

IEEE - 49239

11th ICCCNT 2020
July 1-3, 2020 - IIT - Kharagpur

Kharagpur, India

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 28,2024 at 10:52:49 UTC from IEEE Xplore. Restrictions apply.

Be fo re m u t a t i o n
v3 = C a l l F u n c t i o n v1 v9 v5 v6

A f t e r M u t a t i o n
v3 = C a l l F u n c t i o n v4 v9 v5 v7

B. Operation Mutator

This method mutates the parameter and operation of an
instruction. This includes all types of operations like Unary,
Binary, changing of the constant values, Comparators and also
method calls. An overview of the fuctioning of this mutator
is highlighted in Listing 2.

Listing 2. Operation mutator PHPIL code

Be fo re M u t a t i o n
v1 = L o a d I n t e g e r 10
i f (v1<20){
}
e l s e {
}

A f t e r M u t a t i o n

v1 = L o a d F l o a t 3 0 . 0
i f (v1>20){
}
e l s e {
}

IX. COVERAGE

Randomly feeding arbitrary input to the PHP binary does
not give us any feedback about the behavior of that input. If
we happen to know how that input behaved, like what all code
code paths were executed, then we can fuzz more efficiently.
This section describes the approach that we used to gather
information from the PHP application about the code paths
that were executed and how we plan to use this information.

In order to gather the code coverage information from
PHP, we will be using the popular /edge coverage/
metric. For this, we instrument PHP during compile time
instrumentation. We used clang’s sanitizer-coverage
feature which causes all the branches in the control flow
graph to be instrumented [8] with a call to the function
__sanitizer_cov_trace_pc_guard (Listing 3). We
are free to add the contents of this function will be discussed
in the following paragraph.

Since we can write the body of the
__sanitizer_cov_trace_pc_guard function, we can
execute our code each time a new branch is hit. What remains
here is how to share the coverage data with the fuzzer process.
For this we will be using a shared memory region between
the fuzzer and the PHP application. The shared memory
region acts as a bitmap to hold the information whether an
edge is hit or not. For a particular input if the nth edge is
hit in the PHP executable, the nth bit in the shared memory
region is set. Thus the fuzzer can know if a new path was
found using the current input by comparing the bitmap before
and after the execution of this input. Our implementation

Fig. 2. Working of the Corpus.

of the __sanitizer_cov_trace_pc_guard function,
which handles the setting of the bits in the shared memory
each time a new edge is hit, is described in Listing

Listing 3. Edge numbering code

void
s a n i t i z e r c o v t r a c e p c g u a r d (u i n t 3 2 t * gua rd)

{
/ / D u p l i c a t e t h e guard check .
i f (! * gua rd) re turn ;

/ / C a l c u l a t e t h e i n d e x o f b i t t o be s e t
i n t i d x = * gua rd / 8 ;
shmem [i d x] |= 1 << (* gua rd %8);

/ / S e t t h e b i t f o r t h i s edge
* guard = 0 ;

}

Since the core of our fuzzer is written in python, we wrote
a Python module in C to interface with the Code Coverage
data.

From the coverage data, the fuzzer gets the information
about whether the current input triggered any new paths or
not. If it did find new paths in the PHP binary, the particular
input is sent for mutation and added to the corpus. Otherwise
this input is marked as uninteresting and is discarded.

X. CORPUS

The corpus is like a database that contains a set of inputs for
the fuzz target which leads to the discovery of newer paths in
the existing code coverage. When starting a fuzzing process
the fuzzer should have “Seed corpus” (the set of input that
needed to be seeded for the mutator). The quality of the seed
corpus has a huge impact on fuzzing efficiency as it allows the
fuzzer to discover new code paths more easily. As PHP has
a large codebase, so it would be having a lot of unique paths
and if we would be using a file-based database then it could
take a lot of space hence we used MySQL database in our
fuzzer. A good reference for seed inputs would be regression
tests included in the PHP codebase.

A. Working of Corpus

Figure 2 details how the corpus runs.

IEEE - 49239

11th ICCCNT 2020
July 1-3, 2020 - IIT - Kharagpur

Kharagpur, India

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 28,2024 at 10:52:49 UTC from IEEE Xplore. Restrictions apply.

XI. TESTING

The result was manually verified for syntactical and
semantic correctness and we did not perform fuzzing on a
scale. The whole project is still being extended and we plan
to open source it soon so more people can run it at scale.
For validation of the various components of the fuzzer, we
planted intentional bugs in the PHP interpreter and checked
that the fuzzer is able to reach those by mutation of another
code sample. This also enabled us to verify our test harness
that catches the crashes and logs them. Since the fuzzer is not
fully completed yet (lots of mutation techniques to be added, a
better looking frontend, network support for parallelly fuzzing
multiple inputs for better performance etc), we have not yet
used the fuzzer for actually finding bugs which will be done
within the next couple of months.

XII. CONCLUSION

Our fuzzer uses the novel technique, fuzzing using byte
code, for fuzzing the PHP interpreter. This is the first PHP
fuzzer which fuzz on bytecode level and that makes this fuzzer
different from other fuzzers. As this fuzzer uses a different
technique, it intends to find new bugs on PHP interpreter.

We have implemented our own Intermediate Language
(PhpIL) which will generate semantically and syntactically
correct PHP programs, that will surely lower the errors when
passing to the PHP interpreter. Mutating on the bytecode
level will be more efficient than Abstract Syntax Tree (AST)
because the fuzzing on bytecode level can prove to be more
effective than AST.

An interesting area for further development would be to
make the fuzzer more efficient by integrating both AST and
ByteCode techniques together, which will provide us both
grammar based coverage and system coverage. Also, currently
the fuzzer is only a single threaded process. This a major
limitation as it largely impacts the amount of samples we
execute at a point. A future goal will be to provide multi
thread/ remote procedure call support in order to use the
underlying hardware judiciously.

ACKNOWLEDGMENT

We have taken efforts for this project but it would not have
been possible without the support and guidance of our project
mentor Dr Jayaraj Poroor and Mrs Deepthi LR. Our project
coordinator Mrs. Lekshmi S. Nair, also played a vital role in
assisting us with different parts of the project.

We are highly indebted to them for their guidance and
constant supervision as well as for providing necessary
information regarding the project and also for their support
in completing the project.

Our thanks and appreciations also go to our colleagues in
developing the project and people who have willingly helped
us out with their abilities.

REFERENCES

[1] PHP. The general-purpose scripting language, especially suited for web
development. https://www.php.net

[2] Nischai Vinesh, Sanjay Rawat, Herbert BosCristiano, Giuffrida and
M Sethumadhavan : “ConFuzz—A Concurrency Fuzzer”, Advances in
Intelligent Systems and Computing book series, vol. 1045.

[3] Vivek Parikh, Prabhaker Mateti, “ASLR and ROP Attack Mitigations
for ARM-Based Android Devices”, Communications in Computer and
Information Science, vol. 746.

[4] R. Vinayakumar, K. P. Soman, Prabaharan Poornachandran, S. Akarsh:
“Application of Deep Learning Architectures for Cyber Security”,
Advanced Sciences and Technologies for Security Applications.

[5] S. Groß, “Fuzzil: Coverage guided fuzzing for javascript engines”.
Master’s thesis, TU Braunschweig, 2018.

[6] Marcin Dominiak, Wojciech Rauner: “Efficient approach to fuzzing
interpreters.” In BlackHat Asia, 2019.

[7] Junjie Wang, Bihuan Chen, Lei Wei, Yang Liu, “Superion: Grammar-
Aware Greybox Fuzzing”, arXiv 1812.01197

[8] Clang Sanitizer Coverage compile time instrumentation for runtime code
coverage https://clang.llvm.org/docs/SanitizerCoverage.html

IEEE - 49239

11th ICCCNT 2020
July 1-3, 2020 - IIT - Kharagpur

Kharagpur, India

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 28,2024 at 10:52:49 UTC from IEEE Xplore. Restrictions apply.

